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Abstract  
Resilient safety culture (RSC) model earlier developed by authors is defined and categorized into three groups: 

behavioral, psychological and managerial capabilities. These groups are further sub-divided based on various 

subcontracts and indicators as found in the literature. Resilient safety culture comprises of the static and the dynamic 

component which makes it challenging to understand and control. This model thus shows how resilience in 

organizations can help in defending against uncertainty and safety hazards. A resilience index is needed to quantify 

and rank the projects in organizations and for relative comparison between sites or projects. 

          In this paper, resilience index (RI) or safety culture index (SCI) is developed using a fuzzy synthetic evaluation 

method for safety critical organizations which helps measure the status of resilient safety culture in those organizations. 

Fuzzy synthetic evaluation (FSE) methodology follows the fuzzy set theory. The index is useful to evaluate various 

project sites or organizations and compare successfully as it takes care of the fuzziness information available. It can 

also help in disseminating resources to the weak RI projects. This paper also compares the fault tree analysis approach 

to fuzzy synthetic evaluation approach and finds that FSE approach is better.  
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1. Introduction  
 

Risk is the potential of an event and activity to produce undesirable negative consequences (Rowe, 1975) and the 

definition of risk according to Lawrence was risk is the severity and probability of negative adverse effects 

(Lawrence, 1976). This shows that risk is combination of event’s probability of occurrence and its consequences 

(Rai, Sharma, & Lohani, 2014). In the past, risk assessment, characterization and communication was dependent 

of traditional probabilistic risk assessment approach, which shows lot of limitations. By enhancing the resilience 

of the system, this limitation can be reduced (Aven, 2018). This resilience engineering approach does not need to 

look fully at traditional ways where hazards and uncertainty need to be identified before probabilities are 

calculated. 

            In the current approach, the methodology of using RSC uses the indicators or items using a survey which 

give an overall approach or holistic view of how the system is behaving. This system then gets the resilience level 

at the indicator, sub construct and the construct level. That resilience level shows the weak links and nodes which 

need resource allocation. It does not identify risks in a very local sense such as “how will this machine fail in 

interaction with the human behavior or how this hazard will be dealt with?”  but it looks at how the organization 

as a system is behaving as well as its human resource management. How is the socio technical system behaving? 

There is off course a connectivity between risk and resilience engineering and that is the resilience engineering 

helps give pointers where the weak nodes and linkages need to be focused. The survey questions are not specific 

in nature but holistic in approach which gives it unique sense.  



  

RSC model was generated as seen in earlier studies (A Garg & Mohamed, 2018; Arun Garg, Tonmoy, & 

Mohamed, 2019). These studies then showed how this model can be quantified. This took into consideration the 

risk approach where probability analysis was used using fault tree analysis (FTA) and also kept the indicators 

same throughout and not reducing them. This approach thus gave the probability numbers of those indicators, sub 

construct and constructs. This is more of the unified approach as described by (Aven, 2018).   

 

1.1 Resilient Safety Culture Model 

RSC is a new concept which has been proposed to cover the weaknesses of safety culture.  It is a safety culture with 

resilience, learning, continuous improvements and cost effectiveness (Shirali, Shekari, & Angali, 2016). RSC is based 

on three factors: 1) Psychological/cognitive capability 2) Behavioral capabilities and 3) Managerial/contextual 

capabilities to anticipate, monitor, respond and learn in order to manage risks in a resilient organization. Resilience 

engineering (RE) is added in the safety culture to look at safety in safety-II way. 

The psychological/ cognitive capabilities of an organization enable an organization to notice shifts, interpret 

unfamiliar situations, analyze options and figure out how to respond. It relates to sustaining pressures in a company 

environment and is a personality trait. Behavioral capabilities comprise of established behaviors and routines that 

enable an organization to learn more about the situation, implement new routines and fully use its resources. 

Managerial / contextual capabilities is combination of interpersonal connections, resource stocks and supply lines that 

provide a foundation of quick actions (Lengnick-Hall, Beck, & Lengnick-Hall, 2011).  Figure 1 shows the overall 

system interaction and behavior of an independent system. Resilience is a characteristic which is added and defined 

for the system. It takes care of any uncertainty which arise along with safety issues.  

   

 
Fig. 1. A resilience incorporated system as perceived by authors 

 

            Till now these approaches were used to allocate resources. But we can’t compare two different networks 

and different sites since for example remote site located surveyors may have different perception how they rank 

or express their views in a Likert scale from 1 to 5. This creates different fuzziness while giving the answers. 

Resilience index (RI) is calculated by using a fuzzy theory approach to take care of this fuzziness. There are two 

things to take care while using RI. One is the fuzziness which is there due to the ranking using the Likert scale 

and the other is the three capabilities (psychological, behavioral and managerial). The drawback using full version 

of the model without fuzziness as done in earlier studies is that indexing is not done in that scenario so the 

comparisons cannot be done between different sites and organizations. We use fuzzy synthetic approach to 

generate the RI.  

               There are many heuristic techniques such as probabilistic reasoning, neural networks, genetic 

algorithms, AHP (Analytic hierarchy process) and fuzzy logic which try to find solutions to real world complex 

problems (Bonissone, 1997). This study uses fuzzy synthetic evaluation (FSE) approach because the resilience or 

inversely hazard or risk is related to uncertainty and complexity. This FSE method is used in various applications 

specially in civil engineering such as structural health monitoring, engineering quality, performance evaluation 

etc.(Wang, Mo, He, & Yan, 2017).  

            Working with a complex real-world problem require this kind of methodology because there can be 

qualitative and quantitative indices which can be interacting with each other such is the case in this study. So, one 



  

level FSE approach is not possible. Multi-level FSE approach is more suitable to evaluate the complex problems 

(Wang et al., 2017).  

            Various authors have used fuzzy synthetic approach. Grecco et al. looked at safety culture assessment 

using fuzzy set theory (dos Santos Grecco, Vidal, Cosenza, dos Santos, & de Carvalho, 2014). They 

acknowledged that safety culture concept is hard to measure confirm and manage. The traditional methods used 

have been lagging indicators measuring activities that have happened already like incidents or accidents. These 

are all lagging indicators which cannot be used in dynamic environments. Resilience engineering provide the 

concepts of using the leading as well as lagging indicators together.  

             Wu et. Al studied the fuzzy synthetic approach to formulate a risk assessment index of electric vehicles supply 

chain (Wu et al., 2019). Rai et. al developed framework using the fuzzy synthetic evaluation technique to facilitate 

the identification of the transboundary river basins at risk (Rai et al., 2014). Fugar et al. used FSE to study and quantify 

job satisfaction level of construction professionals. Boateng et. al formulated a safety culture index using the FSE to 

quantify the level of safety culture on construction projects in developing countries. It is used in determining the status 

of safety culture index and it can also be used to compare the relative safety culture levels of different projects for 

benchmarking purposes (Boateng, Pillay, & Davis, 2020).   

 

2. Fuzzy synthetic evaluation methodology 

 

Fuzzy approach deals with fuzzy logic and membership function. This idea was first introduced by Dieter Klaua 

in 1965 and L.A Zadeh (Akter et al., 2019). There are three steps to implement the fuzzy logic technique. 

Fuzzification, fuzzy inference and defuzzification. The relationships between a parameter and the membership 

function is described by a fuzzy number (Rai et al., 2014). The value of membership function ranges between 0 

to 1. The fuzzy number can assume any justified shape according to the information available. Most common 

functions used to represent linguistic variable are triangular and trapezoidal (Huey-Ming Lee, 1996). Fuzzification 

coverts the crisp data into fuzzy data or membership function, fuzzy inference combines the membership function 

with control rules to get the output and defuzzification lead to crisp output of the fuzzy number. Centroid and 

center of area method are the two most commonly used defuzzification methods  (Yager, 1980). 

 

2.1. Model Application 

Multiple organizations with sites located remotely and urban areas were surveyed. The surveys were completed by 

different employees including engineers, supervisors, and managers. There was no limitation on who could fill the 

survey since the goal is to gauge the perception of all employees working in these organizations along with other 

attributes about the safety culture. There were 42 items in the survey. Nine items were for “psychological capability”, 

fifteen items were for “behavioral capability” and eighteen items were for “managerial capability”. Total forty two 

items or safety culture attribute (SCA) were inferred using the various indicators of RSC model (A Garg & Mohamed, 

2018). Appendix A shows the breakdown of indicators, constructs and sub constructs. Likert scale from 1-5 was used 

to rate these items, where 1 on the low side or lower expectancy and 5 on the higher side or higher expectancy.  

It is difficult to determine the exact probability of occurrence between events (Pan & Yun, 1997). The fuzzy numbers 

are thus used to deal with imprecise and vague information such as extremely likely, likely, extremely unlikely etc. In 

our Likert scale, the survey gives five options starting from 1 which denotes very low expectancy (VLE), 2 denotes 

low expectancy (LE), 3 denotes medium expectancy (ME), 4 denote high expectancy (HE) and 5 denotes very high 

expectancy (VHE). These linguistic expressions describe the probability of the indicator’s occurrence. These linguistic 

values can be represented by various forms of fuzzy numbers. 

 

3. Methodology 

 

The FSE model follows the following approach (Xu et al., 2010).  

Step 1: Establish a basic set of criteria 𝜋 = {𝑓1, 𝑓2, 𝑓3 … … . . 𝑓𝑛}; where n is number of criteria 



  

Step 2: Label the set of grade alternatives as 𝑔 = {𝑔1, 𝑔2, 𝑔3, … . 𝑔𝑛}. This is the scale measurement categories 

such as Likert scale of 1 means VLE (very low expectancy). 

Step 3: Set the weight for each factor component. The weight (W) is found or calculated from the survey using 

the equation : 𝑤𝑖 =  
𝑀𝑖

∑ 𝑀𝑖
5
𝑖=1

, 0 < 𝑤𝑖 < 1, ∑ 𝑤𝑖=1
𝑛
𝑖=1  where 𝑤𝑖  is weight function of SCA or SCG and Mi is the 

mean score value of the SCA or SCG, the limit of M is 5 in this study which is the grade 

Step 4: Apply fuzzy evaluation matrix for each factor where the matrix is expressed as 𝑅𝑖 =  (𝑟𝑖𝑗)𝑚𝑥𝑛, where 𝑟𝑖𝑗  

is the degree to which gj satisfies the criteria fj. 

Step 5. Reach a final FSE results by considering the weight vector and fuzzy evaluation matrix using equation: 

𝐷 = 𝑤𝑖𝑜 𝑅𝑖 where 𝑤𝑖is the weight function for SCA for each SCG, o is fuzzy composite operation and 𝑅𝑖 is fuzzy 

matrix 

Step 6. The final FSE matrix is normalized and resilient safety culture index (SCI) for the particular factor is 

computed using the equation: 𝑆𝐶𝐼 = ∑ 𝐷 ∗ 𝑔5
𝑖=1  

 

4. Result and discussion 

Several preliminary tests were conducted (Osei-Kyei & Chan, 2017) including reliability for internal consistency, 

correlation matrix, KMO, and Bartlett’s test of sphericity to check the appropriateness of the data used in this 

technique. First, reliability test is conducted using the Cronbach’s alpha model. Cronbach’s alpha developed by 

Lee Cronbach in 1951 to measure the reliability or internal consistency. The overall alpha value for the 42 items 

is 0.945, which is above the threshold of 0.70 (Chan et al. 2010). This indicates high reliability among the survey 

responses (Chan, Lam, Chan, Cheung, & Ke, 2010). 

            The correlation matrix measures the relationship among factors based on the partial correlation 

coefficients. Appendix B shows this matrix. The matrix calculated indicates a strong correlation because their 

correlation coefficients exceed 0.30 for more than one other variable (Li et al. 2005b; Norusis 2008). The KMO 

statistic and Bartlett’s test of sphericity measure the sampling adequacy. KMO test measure how suited the data 

is for factor analysis. The test measures sampling adequancy for each variable and for complete model as well. 

The KMO statistic values vary between 0 and 1, where a value of 0.50 is considered acceptable for a satisfactory 

factor analysis (Norusis 2008). A KMO value of 0.895 was recorded, which exceeds the threshold (Field, 2013). 

A KMO value of less than 0.5 is not used, 0.5 to 0.6 is termed “poor”, 0.6 to 0.7 is “mediocre”, 0.7 to 0.8 is 

“middling”, 0.8 to 0.9 is “good”, and 0.9 and above is “excellent” (Chan et al., 2010). This again signifies the 

appropriateness of the survey data for factor analysis (Chan et al. 2010).  

             Further, Bartlett’s test of sphericity compares the correlation matrix (pearson correlations) to identity 

matrix . The value of Bartlett’s test is large with chi-square value of 3477.6 and its associated significance value 

is less than 0.05 which is 0.000, indicating that the population correlation matrix is not an identity matrix (Norusis 

2008). The principal factor extraction with eigenvalues greater than 1.0, explaining 65.14% of the variance in 

responses as shown in Table 1.  Varimax rotation was used because it simplifies interpretation. Again, this 

reaffirms the appropriateness of the survey data (Ahadzie et al. 2008).  

 

Table 1. Principal factor extraction for the whole data 

 

Component Initial Eigenvalues 

Extraction 

Sums of 

Squared 

Loadings     

  Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 13.781 32.811 32.811 13.781 32.811 32.811 

2 4.698 11.185 43.996 4.698 11.185 43.996 



  

3 2.118 5.044 49.040 2.118 5.044 49.040 

4 1.871 4.455 53.495 1.871 4.455 53.495 

5 1.399 3.332 56.827 1.399 3.332 56.827 

6 1.261 3.002 59.830 1.261 3.002 59.830 

7 1.167 2.778 62.608 1.167 2.778 62.608 

8 1.067 2.541 65.148 1.067 2.541 65.148 

9 0.981 2.335 67.483       

10 0.893 2.127 69.610       

11 0.877 2.089 71.699       

12 0.817 1.945 73.644       

13 0.782 1.863 75.507       

14 0.701 1.669 77.175       

15 0.667 1.587 78.762       

16 0.601 1.430 80.192       

17 0.595 1.416 81.608       

18 0.566 1.349 82.957       

19 0.550 1.310 84.267       

20 0.530 1.262 85.530       

21 0.491 1.170 86.700       

22 0.474 1.128 87.827       

23 0.442 1.051 88.879       

24 0.417 0.993 89.871       

25 0.387 0.922 90.794       

26 0.359 0.854 91.648       

27 0.352 0.838 92.486       

28 0.310 0.739 93.225       

29 0.290 0.691 93.916       

30 0.286 0.682 94.598       

31 0.267 0.636 95.235       

32 0.266 0.633 95.867       

33 0.241 0.575 96.442       

34 0.213 0.507 96.949       

35 0.200 0.477 97.426       

36 0.189 0.451 97.877       

37 0.179 0.426 98.303       

38 0.174 0.415 98.718       

39 0.158 0.377 99.095       

40 0.155 0.368 99.463       

41 0.127 0.302 99.765       

42 0.099 0.235 100.000       

 



  

            Mean score analysis was used to rank the safety culture attributes in Table 2. Further, to determine 

the critical attributes of resilient safety culture among the list, normalization was used. Normalized attributes 

greater than or equal to 0.50 are retained. This selection mechanism has been used by many previous studies 

to establish the most significant factors (Osei-Kyei and Chan, 2017). With this criterion, out of total 42 

indicators or attributes, 15 attributes were deemed critical as presented in Table 3. In this tabulation, we don’t 

use resilience enhancement or weights based on constructs, some studies have used the probability of 

occurrence with severity to get the significant values of mean and then ranked them. We don’t have the 

severity data thus giving a severity number would create problems. Indexing gives a unbiased outlook of the 

indicators, later the resources can be allocated based on the psychological, behavioral and managerial 

approach as found in the earlier studies (A Garg & Mohamed, 2018).  

 

Table 2. Ranking of safety culture attributes-SCA (level 1) 

 

Safety 

culture 

attributes 

Mean Rank Standard 

deviation 

Normalization 

P1 3.35 1 0.83 1.00 

P2 3.06 11 0.90 0.57 

P3 3.01 15 0.86 0.48 

P4 3.01 14 0.90 0.50 

P5 3.07 9 0.71 0.58 

P6 2.87 27 0.85 0.28 

P7 2.99 17 0.93 0.46 

P8 2.76 38 1.08 0.11 

P9 2.78 36 0.91 0.13 

B1 3.07 9 0.78 0.58 

B2 2.96 20 0.88 0.41 

B3 3.06 12 0.69 0.56 

B4 2.75 39 0.89 0.09 

B5 2.77 37 0.92 0.12 

B6 2.72 41 0.93 0.04 

B7 3.32 2 0.81 0.96 

B8 3.24 4 0.88 0.85 

B9 3.24 4 1.03 0.85 

B10 3.23 6 0.97 0.82 

B11 3.20 7 0.85 0.78 

B12 2.98 18 0.78 0.44 

B13 2.81 33 0.88 0.19 

B14 2.69 42 0.92 0.00 

B15 2.88 26 0.92 0.30 

M1 3.32 2 0.74 0.96 

M2 3.09 8 0.93 0.60 

M3 2.86 28 0.85 0.26 



  

M4 3.01 15 0.90 0.48 

M5 2.89 25 0.91 0.31 

M6 2.73 40 1.12 0.07 

M7 2.97 19 0.89 0.43 

M8 2.86 31 0.90 0.25 

M9 2.86 28 0.85 0.26 

M10 2.81 34 0.86 0.18 

M11 2.94 23 0.88 0.37 

M12 2.86 28 0.96 0.26 

M13 2.96 20 0.97 0.41 

M14 2.80 35 0.96 0.17 

M15 2.94 22 0.78 0.39 

M16 3.06 12 0.84 0.56 

M17 2.90 24 1.02 0.32 

M18 2.85 32 0.90 0.24 

 

Normalized value= (Actual value- minimum value)/ (Maximum value-minimum value) 

 

           Table 3 shows the selected indicators which has normalized score of 0.5 and above.  There are four 

indicators from the psychological capability, five from behavioral and four from managerial constructs. This 

shows the resilience information selection using these critical 15 indicators.  

 

Table 3. Attributes mean higher than 0.5 (level 2) 

Indicator Naming (SCA) safety culture attribute Constructs  

Sense of purpose P1 

Strong core value P2 

Highly visible moral purpose  P4 

Having Attitude P5 

Disciplined creativity B1 

Ability to follow different course of action B3 

Development of useful practical habits B7 

Develop habits of investigation B8 

Develop habits of collaboration B9 

Develop habit of flexibility B10 

Creating robust responses B11 

Respectful interactions within organization M1 

Face to face honest interaction M2 

Exchanging resources M4 

Creating organization structure M16 

 



  

4.1 Formulating FSE tool for evaluating resilient safety culture  

 

The multi-level FSE is used to analyze this multilevel decision problem (Ameyaw & Chan, 2015). The first level 

is the safety culture groupings (SCA) and the second level is the SCG looking at the lower to higher levels. The 

proposed fuzzy model consists of two levels of membership functions (MFs). Thus membership grades level to 

level from the lowest indicators and then determines the project resilience index (SCI).  The FSE tool is used to 

determine the objective weightings of each SCG considering the 15 attributes as input variables in the evaluation 

expression. Subsequent sections illustrate the application of the FSE in developing the SCI. 

 

4.2 Calculating the weights for each SCA and SCG (multi-level) 

 

The weightings for each SCA and SCG are calculated using Eq. (1) based on the mean scores from the survey: 

                                                     𝑤𝑖 =  
𝑀𝑖

∑ 𝑀𝑖
5
𝑖=1

, 0 < 𝑤𝑖 < 1, ∑ 𝑤𝑖=1
𝑛
𝑖=1                                              (1) 

Where 𝑤𝑖  is weight function of SCA or SCG and Mi is the mean score value of the SCA or SCG. For example if 

we have to calculate the weight of P1 , equation 1 is used. 

W1 = 
3.35

3.35+3.06+3.01+3.07
 =0.38 

Similarly, the same procedure is adopted to compute the weights for SCA and SCG. Same approach is used to 

calculate the weightings for the remaining SCAs and SCGs. 

 

Table 4. Weights of SCA and SCG for 15 indicators selected 

SCA  Mean of SCA Weight SCA Total mean of SCG Weight of SCG 

P1 3.35 0.38   

P2 3.06 0.22   

P4 3.01 0.19   

P5 3.07 0.22   

Psychological capability (P) 12.50 0.26 

B1 3.07 0.11   

B3 3.06 0.10   

B7 3.32 0.18   

B8 3.24 0.16   

B9 3.24 0.16   

B10 3.23 0.15   

B11 3.20 0.14   

Behavioral capability (B) 22.37 0.47 

M1 3.32 0.37   

M2 3.09 0.23   

M4 3.01 0.19   

M16 3.06 0.22   

Managerial capability (M) 12.47 0.26 

 



  

4.3 Define the membership function (MF) for each level  

The MF are calculated to determine the resilient safety culture index. The MF of the SCA are calculated to get 

the second level MF of the SCG.  We have 5 point Likert scale rating system where 1 is low expectancy and 5 is 

highest. Using equation 2, we calculate the MF for each SCA.  Taking example of P1 where 1% VLE, 5% LE, 

58% ME, 26% HE and 9% VHE.  

 

MFP1 = (0.01/VLE) + (0.05/LE) + (0.58/ME) + (0.26/ HE) + (0.09/VHE)               (2) 

 

The MF can be defined as (0.01, 0.05, 0.58, 0.26, 0.09). The MF for the remaining SCA are calculated using the 

same approach. Table 5 shows the MF for level 1. To calculate the level 2 MF, equation 3 is used.  

                                                                 𝐷 = 𝑤𝑖𝑜 𝑅𝑖                                                                     (3) 

Where 𝑤𝑖is the weight function for SCA for each SCG, o is fuzzy composite operation and 𝑅𝑖 is fuzzy matrix. 

Using the example of Psychological capability SCG, following MF for the SCG is calculated.  

DP = wp o Rp = (wp1, wp2, wp4, wp5) x |
|

𝑀𝐹𝑝1
𝑀𝐹𝑝2
𝑀𝐹𝑝4
𝑀𝐹𝑝5

 

|
|= (0.38, 0.22, 0.19,0.22) x 

|(0.01, 0.05,0.58,0.26,0.09)|

|(0.01,0.29,0.38,0.26,0.06)|

|(0.01,0.29,0.43,0.20,0.06)|
|(0.00,0.17,0.63,0.16,0.04)|

 

= 

(0.01,0.17,0.52,0.23,0.07) 

The remaining SCG are calculated in the same way.   

 

Table 5. Membership functions (MF) for selective SCA and SCG 

 

SCA  

Weight 

SCA 

MF for selective SCA from 

lowest to highest (1 to 5) 

MF for SCG from lowest to 

highest (1 to 5) 

P1 0.38 0.01 0.05 0.58 0.26 0.09      

P2 0.22 0.01 0.29 0.38 0.26 0.06      

P4 0.19 0.01 0.29 0.43 0.20 0.06      

P5 0.22 0.00 0.17 0.63 0.16 0.04      

Psychological capability (P) 0.01 0.17 0.52 0.23 0.07 

B1 0.11 0.01 0.19 0.57 0.18 0.05      

B3 0.10 0.01 0.15 0.61 0.21 0.01      

B7 0.18 0.01 0.08 0.48 0.40 0.03      

B8 0.16 0.00 0.13 0.46 0.38 0.04      

B9 0.16 0.01 0.15 0.37 0.43 0.05      

B10 0.15 0.01 0.18 0.33 0.45 0.03      

B11 0.14 0.01 0.13 0.46 0.40 0.01      

Behavioral capability (B) 0.01 0.14 0.46 0.36 0.03 

M1 0.37 0.01 0.09 0.55 0.30 0.06      

M2 0.23 0.01 0.28 0.42 0.21 0.09      

M4 0.19 0.00 0.28 0.43 0.26 0.04      

M16 0.22 0.03 0.15 0.57 0.20 0.04      



  

Managerial capability (M) 0.01 0.18 0.50 0.25 0.06 

 

Afterwards the MF of level 2 are substituted in equation 4 to calculate the SCI for each category. Where g is the 

grades from the Likert scale from 1 to 5.   

                                                                    SCI= ∑ 𝐷 𝑥 𝑔5
𝑖                                                                     (4) 

 

Using Psychological capability as example, the SCI is calculated as follows. 

 

SCI P = ( 1*0.01)+(2*0.17)+(3*0.52)+(4*0.23)+(5*0.07) =0.33 

 

Table 6 shows the SCI for each construct along with the ranking and coefficients. Behavioral capability is ranked 

first, then psychological then managerial. Coefficient is calculated as follows (equation 6). 

                                            Coefficient = (SCI for SCG/ ∑ 𝑆𝐶𝐼 𝑓𝑜𝑟 𝑆𝐶𝐺)                                           (5) 

 

Table 6. Resilience index for each safety culture group (constructs) 

 

Safety culture group 

(SCG) or construct 

Safety culture index 

or Resilience index 

Ranking Coefficients 

Psychological capability 

(P) 

3.17 2 0.330 

Behavioural capability (B) 3.27 1 0.340 

Managerial capability (M) 3.16 3 0.329 

Total 9.61  1 

 

From this study, the SCI for evaluating the resilience index (RI) levels can be expressed as follows as shown in 

equation 6: 

 

                        SCI= (0.33 x P) + (0.34 x B) + (0.329 x M)                                                   (6) 

 

These findings show that most important aspect of resilience in behavioral, then psychological and then 

managerial. It shows the resource allocation first should go to psychological then behavioral then managerial as 

per the earlier studies. In this case, behavioral is already highest so the first allocation is psychological and then 

managerial.  

 

5. Conclusions  
 

The resilience index is designed to create a baseline to enable organizations to monitor the multiple factors that 

contribute to their resilience. Its primary function is to diagnose strengths and weaknesses and measure the relative 



  

performance over time. The resilience index follows a nonlinear relationship where resilience starts with the 

resilience index from 3.3 and it goes to a 15 maximum. No resilience in the system shows a resilience index of 

zero value. A company without too much effort and time can jump from a very low base from 3.3 to say 8 then it 

may take much more effort and time to improve and say reach 12 and perhaps it will take them lifetime to move 

from 12 to reach 14 or higher. If there is no data from either of the three constructs, then the resilience index is 

zero. This is how the method functions. The resilience index developed can be deemed flexible in operation at 

the normalization steps when the user chooses to have a threshold, the threshold can be there or not depending 

upon the number of calculations the user wants to achieve. The user can choose to select the group in the data for 

normalization irrespective of the threshold which can be a flexibility to the calculation. Resilience index can help 

the companies make strategy in dealing with risk. If the company finds a low resilience index, it can see where 

the level is low and work to enhance the resilience by strengthening that area. 

            The FSE approach has the ability to do initial filtering to establish critical indicators that requires further 

analysis (Ameyaw & Chan, 2015). The main goal of this study is resource allocation and ranking the constructs 

based on the fuzziness information available and also for project comparisons. It takes care of the fuzziness better 

than any probabilistic techniques (Lo, 1999). Behavioral capability has the highest ranking followed by 

psychological and managerial. This shows that the resilience information is recorded most for behavioral 

capability. If we use the fault tree methodology as used in earlier studies for all the data of remote and urban sites 

together, the following order emerges (Arun Garg et al., 2019). First resilience ranking in psychological then 

behavioral and then managerial as shown in Appendix C. This shows that indexing is better approach since the 

fuzziness is cleared between the data available and thus the ranking between the construct changes.  

            The resilience index is a great tool which can help the industry in reducing incidents and enhance its safety 

records. More research needs to be done in this area and future studies will look into longitudinal studies where 

the resilience index predictions of weak areas if rectified can it bring less incidents and higher resilience levels.  
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Appendix A 

 

Indicator # 

Constructs 

(SCG) Safety culture attribute (SCA) 

Constructs 

(SCG) Sub constructs 

1 P Sense of purpose P1 

Conceptual 

Orientation 

2 Strong core value P2 

3 Prevailing vocabulary P3 

4 Highly visible moral purpose P4 

5 Having Attitude P5 

Constructive 

Sense making 

6 Mindset P6 

7 Ingenuity to develop new skills P7 

8 Common language P8 

9 Situation specific interpretations P9 

10 B Disciplined creativity B1 Learned 

resourcefulness 11 Combine originality and initiative B2 

12 Ability to follow different course of action B3 

Counterintuitive 

agility 

13 Engaging in non-conforming repertoires B4 

14 Have varied and complex action inventory B5 

15 Have diverse competitive actions B6 



  

16 Development of useful practical habits B7 

Practical habits 

17 Develop habits of investigation B8 

18 Develop habits of collaboration B9 

19  Develop habit of flexibility B10 

20 Creating robust responses B11 

21 Ability to spot an opportunity B12 

Behavioral 

preparedness 

22 Developing new competencies B13 

23 Unlearning obsolete information B14 

24 Benefit from situations that emerge B15 

25 

M Respectful interactions within 

organization M1 

Deep social 

capital 

26 Face to face honest interaction M2 

27 Disclosure oriented intimacy M3 

28 Exchanging resources M4 

29 Sharing tacit information M5 

30 Cross-functional collaboration M6 

31 Forging relationships M7 

Broad resource 

network 

32 Relationships with strategic alliances M8 

33 Bond with various environmental agents M9 

34 Promote organizational slack M10 

35 

Communicating without getting ignorant 

label M11 

Psychological 

safety 

36 

Communicating without getting 

incompetent label M12 

37 

Communicating without getting negative 

label M13 

38 

Communicating without getting time 

water label M14 

39 Sharing decision making M15 

Diffused power 

and 

accountability 

40 Creating organization structure M16 

41 

Members have discretion and 

responsibility M17 

42 Replying on self-organization M18 

P= Psychological capability, B=Behavioral capability, M=Managerial capability 
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Appendix C 

 

Construct 

Group # 

RSC constructs Total 

data 

1 Psychological capability  0.600 

2 Behavioral capability  0.596 

3 Managerial capability  0.584 

 Total resilience level probability (RL) 0.209 

 


