
 The Fourteenth International Conference on Construction in the 21st Century (CITC-14)  

  

                                                                        Río de Janeiro, Brasil | September 2-5, 2024 

 

 

 

Optimization of Material Transport Routes in Road Construction Projects 

through Linear Programming 
Victor Andre Ariza Flores1, Euler Portocarrero2, Gino Prado3 

1 Universidad Tecnológica del Perú, Lima 15046, Perú 
2 Universidad Nacional Mayor de San Marcos, Lima 15081, Perú  

3 Pontificia Universidad Católica del Perú, Lima 15088, Perú 
variza@utp.edu.pe 

 

Abstract  
The present study develops a linear programming model for optimizing material transport routes in road construction 

projects. Taking into account factors such as load capacity, distance, travel time, transportation costs, and 

environmental restrictions, the aim is to find the optimal solution that minimizes total costs and ensures the timely and 

sustainable delivery of materials. The research conducts a case study of the Combapata Road in Cusco Peru as an 

application of the proposed model, from which project data such as unit costs, volume, distances, times, and transport 

unit speeds were inputted into the developed algorithm. The results reveal a minimum total cost of USD 67,226.58 

per m3, representing an 11.6% reduction compared to the original project cost calculated using traditional methods. 

This approach demonstrates the effectiveness and potential of linear programming in optimizing infrastructure 

projects, offering tangible benefits in terms of efficiency and costs. 
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1. Introduction 
 
The growing urban development and infrastructure in the contemporary world demand efficient and sustainable 

management of road construction projects. Among the various challenges of these projects, the logistics of material 

transportation plays a critical role in terms of costs, construction times, and environmental sustainability (Muerza & 

Guerlain, 2021; Naz et al., 2022). With the heterogeneity of necessary materials and complex logistical constraints, 

optimizing transportation routes can have a significant impact on the overall efficiency of road construction projects 

(Alanazi et al., 2022; Choudhari & Tindwani, 2017). 

Regarding route optimization, the Traveling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP) 

are the most studied models (Toth & Vigo, 2014). These problems, which focus on minimizing the total distance or 

time of travel, have been adapted to consider specific constraints of road construction, such as load capacity and 

delivery time (Yang & H. Bell, 1998). 

Linear programming, a widely used mathematical method in operations research for solving optimization 

problems, provides the theoretical and practical framework to address this challenge (Dordevic et al., 2022; Zhao et 

al., 2021; Zhou et al., 2022). Through the formulation and solving of a linear programming model, decision-makers 

are provided with a useful tool for the efficient planning and management of material transportation in road 

construction. Additionally, a hybrid algorithm has been developed, combining an interior point method and column 

generation for large linear programs arising in discrete optimal transportation problems, demonstrating its 

effectiveness in terms of computation time and memory usage (Zanetti & Gondzio, 2023). (Yi et al., 2020) It focused 

on planning the transportation of prefabricated products, achieving cost savings through a mathematical programming 

model. Finally, the consistent vehicle routing problem has been addressed through formulations based on set 

partitioning, providing insights into the adoption of consistency measures in practice (Wang et al., 2022). 

The current issue lies in the deficiencies of current processes for route selection, cost evaluation, and time and 

distance assessment in road construction projects in the application of optimization techniques and models. This leads 

to counterproductive effects by not adequately considering load capacity, delivery schedules, and resource 

management assigned to the project. Consequently, decision-making focused on optimizing processes, reducing 

operational costs, and efficiently managing available resources becomes challenging. It is necessary to incorporate 

more robust analytical tools to improve the planning of material transportation and distribution in these types of 

projects. 
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2. Methodology 

 
Establishing a rigorous research methodology is indispensable in engineering to ensure the validity of findings and 

the achievement of the objectives set forth in the study (Paniura et al., 2023). Therefore, initially, a literature review 

of previous studies on transportation route optimization and applications of linear programming in road construction 

projects was conducted. This allowed for the identification of relevant variables for the model and methodological 

considerations to be taken into account. Subsequently, a linear programming model was formulated defined by an 

objective function that minimizes transportation costs, subject to constraints associated with vehicle load capacity, 

delivery schedules, time windows, environmental limitations, and budgetary constraints. 

The model was solved using specialized software in linear programming to find optimal routes between 

quarries, depots, and work fronts. The results were validated by comparing them with real data from the case study. 

Finally, a quantitative analysis of the input data was conducted, including routes, locations, transportation capacity, 

costs, schedules, operational, and budgetary constraints. This allowed for the evaluation of the effectiveness of the 

model in increasing productivity and efficiency in transportation resource management in road projects. 

 

3. Proposed quarry transportation solution 
 

3. 1 Definition of variables 

𝑋𝑖𝑗: It is the volume (m3) of material that will be transported from quarry i to work front j on the road that starts 

at mileage 0+000 to km m+000, with a length of "m" kilometers. 

 i = 1, …, n {1=B-1, …, n=B-n} 

 j=1, …, m {1=km 0+000 al km 1+000, …, m= km m-1+000 al km m+000} 

The objective function aims to minimize the total transportation cost. Assuming that the transportation cost per 

cubic meter per kilometer is constant and denoted as c. The objective function may be complicated to define 

without knowing the specific transportation costs. However, if we assume a unit transportation cost for 

simplification, the objective function will simply focus on minimizing the total distance traveled by the material, 

which is not typically how these problems would be modeled, but we will focus on resource allocation: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝐶𝑖𝑗 ∗  𝑥𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 

Where 𝐶𝑖𝑗 is the distance from quarry i to work front j of the road. Capacity constraints are associated with the 

maximum volumes of each material. 

∑ 𝑥1𝑗

𝑚=25

𝑗=1

≤  5200 

∑ 𝑥2𝑗

𝑚=25

𝑗=1

≤  8100 

∑ 𝑥3𝑗

𝑚=25

𝑗=1

≤  10200 

 

The demand constraints at each kilometer of the road correspond to: 

∑ 𝑥𝑖𝑗

𝑛=3

𝑖=1

≤  variable (according to Volume from Table 2) 

∀j=1, 2, …, 25. Likewise, there is a non-negativity constraint. ∀j=1, 2, …, 25 

 

𝑥𝑖𝑗 ≥  0 (according to Volume from Table 3) 

  



  

4. Case Study 

 
The study will be conducted by analyzing the optimization of transportation routes in the construction of the 

Combapata Road, which is a public investment project for the improvement of a local road in Cusco, Peru. The road 

is in the district of Combapata, province of Canchis, in the region of Cusco, Peru. It is situated at an altitude of 3,481 

meters above sea level and has a temperate climate.  

 
4. 1 Transportation of granular material from quarries 

The first linear programming problem arises in the transportation of materials from quarries for filling in road 

construction. For the construction of the pavement, it is required that a layer of filling material be placed beneath it, 

with the material being aggregate from a quarry in the area, as shown in Figure 1. 

 
Fig. 1. Cross-section in fill for a road. 

 

In urban road projects, it is common to use products from an aggregate supply company; however, in highway 

construction, the surrounding environment often offers aggregate quarries that, after conducting the respective soil 

studies, can be used as sources of material supply. The road under study has a length of 25.889 km and includes the 

Quarries indicated in Table 1. 
Table 1. Table of data on quarry locations and volumes 

Quarry Location (mileage) Access (km) Volume (m3) 

B-1 2+920 0.005 5,200 

B-2 15+100 0.025 8,100 

B-3 25+889 1.080 10,200 

Total Volume 23,500 

 

Below is Table 2, which identifies how the Project Manager in charge of preparing the technical file has assigned the 

different sections to be executed to different quarries. 

 

 
Table 2. Assignment of work fronts to project quarries. 

Start End Volume (m3) Assigned quarry Start End Volume (m3) Assigned quarry 

0+0.00 1+000.00 963.18 B-1 13+000.00 14+000.00 195.04 B-2 

1+000.00 2+000.00 730.79 B-1 14+000.00 15+000.00 191.21 B-2 

2+000.00 3+000.00 973.86 B-1 15+000.00 16+000.00 754.73 B-2 

3+000.00 4+000.00 364.57 B-1 16+000.00 17+000.00 676.05 B-3 

4+000.00 5+000.00 666.34 B-2 17+000.00 18+000.00 682.27 B-3 

5+000.00 6+000.00 132.72 B-2 18+000.00 19+000.00 433.95 B-3 

6+000.00 7+000.00 792.44 B-2 19+000.00 20+000.00 303.28 B-3 

7+000.00 8+000.00 963.14 B-2 20+000.00 21+000.00 835.57 B-3 

8+000.00 9+000.00 968.82 B-2 21+000.00 22+000.00 475.59 B-3 

9+000.00 10+000.00 466.43 B-2 22+000.00 23+000.00 611.56 B-3 

10+000.00 11+000.00 967.84 B-2 23+000.00 24+000.00 687.28 B-3 



  

11+000.00 12+000.00 842.51 B-2 24+000.00 25+000.00 225.05 B-3 

12+000.00 13+000.00 677.14 B-2 25+000.00 26+000.00 787.67 B-3 

Total Volume 16,369.03 

Prior to initiating the linear programming model, the costing of transports was conducted under the initial conditions 

of the project. Subsequently, with the developed linear programming model, we will carry out a redistribution of 

transports to verify if such distribution is optimal. Then, we will propose to the linear programming model to be 

dynamic regarding capacity. Table 4 shows the distribution of transportation and its costing under the original 

conditions of the project. 
Table 3. Calculation of distance and transportation costs 

Start End 
Center of 
gravity 

Volume 
(m3) 

Quarry Location 
Access 
(km) 

Transport 
distance (km) 

Transport a) 
Dist <1 km 

Transport b) 
Dist >1 km 

    c     a b |a +b -c | m3. km m3. km 

0+0.00 1+000.00 0+500.00        963.18    B-1 2+920.00 0.005              2.43             963.18           1,372.53    

1+000.00 2+000.00 1+500.00        730.79    B-1 2+920.00 0.005              1.43             730.79              310.59    

2+000.00 3+000.00 2+500.00        973.86    B-1 2+920.00 0.005              0.43             413.89                     -      

3+000.00 4+000.00 3+500.00        364.57    B-1 2+920.00 0.005              0.58             209.63                     -      

4+000.00 5+000.00 4+500.00        666.34    B-2 15+100.00 0.025            10.63             666.34           6,413.52    

5+000.00 6+000.00 5+500.00        132.72    B-2 15+100.00 0.025              9.63             132.72           1,144.71    

6+000.00 7+000.00 6+500.00        792.44    B-2 15+100.00 0.025              8.63             792.44           6,042.36    

7+000.00 8+000.00 7+500.00        963.14    B-2 15+100.00 0.025              7.63             963.14           6,380.80    

8+000.00 9+000.00 8+500.00        968.82    B-2 15+100.00 0.025              6.63             968.82           5,449.61    

9+000.00 10+000.00 9+500.00        466.43    B-2 15+100.00 0.025              5.63             466.43           2,157.24    

10+000.00 11+000.00 10+500.00        967.84    B-2 15+100.00 0.025              4.63             967.84           3,508.42    

11+000.00 12+000.00 11+500.00        842.51    B-2 15+100.00 0.025              3.63             842.51           2,211.59    

12+000.00 13+000.00 12+500.00        677.14    B-2 15+100.00 0.025              2.63             677.14           1,100.35    

13+000.00 14+000.00 13+500.00        195.04    B-2 15+100.00 0.025              1.63             195.04              121.90    

14+000.00 15+000.00 14+500.00        191.21    B-2 15+100.00 0.025              0.63             119.51                     -      

15+000.00 16+000.00 15+500.00        754.73    B-2 15+100.00 0.025              0.38             283.02                     -      

16+000.00 17+000.00 16+500.00        676.05    B-3 25+889.00 1.08            10.47             676.05           6,401.52    

17+000.00 18+000.00 17+500.00        682.27    B-3 25+889.00 1.08              9.47             682.27           5,778.14    

18+000.00 19+000.00 18+500.00        433.95    B-3 25+889.00 1.08              8.47             433.95           3,241.17    

19+000.00 20+000.00 19+500.00        303.28    B-3 25+889.00 1.08              7.47             303.28           1,961.92    

20+000.00 21+000.00 20+500.00        835.57    B-3 25+889.00 1.08              6.47             835.57           4,569.73    

21+000.00 22+000.00 21+500.00        475.59    B-3 25+889.00 1.08              5.47             475.59           2,125.41    

22+000.00 23+000.00 22+500.00        611.56    B-3 25+889.00 1.08              4.47             611.56           2,121.50    

23+000.00 24+000.00 23+500.00        687.28    B-3 25+889.00 1.08              3.47             687.28           1,696.89    

24+000.00 25+000.00 24+500.00        225.05    B-3 25+889.00 1.08              2.47             225.05              330.60    

25+000.00 26+000.00 25+500.00        787.67    B-3 25+889.00 1.08              1.47             787.67              369.42    

Volume      16,369.03        
  
Quantity of traspotation     15,110.71         64,809.93    

          

 

Unit cost  USD 2.68  USD 0.55  

          Partial cost    USD 40,555.50   USD 35,711.24 

          Total cost       USD 76,266.74  

 
 

5. Results and analysis 
To carry out the analysis of minimum cost through linear programming, initially, the costs were calculated in relation 

to the distances from the quarries (origin i) to each of the kilometers requiring fill material (destination j). For this 

purpose, we used the data provided in Table 4, which are calculated according to the specificities of each project. 

 
 

 



  

Table 4. Costs calculated through unit price analysis. 

Quarries Value Unit 

Dump truck 15 m3 

Loading time 4.7 min 

Unloading time 3 min 

Outbound speed 20 km/h 

return speed 25 km/h 

Price per hour of loader 54.45 USD 

Price per hour of dump truck 84.72 USD 

 

Table 4 shows that the dump trucks cover the same distances at higher speeds when empty than when loaded with fill 

material. Additionally, loading times are 36.2% longer than unloading times, and the costs per hour for a round trip 

cycle are USD 139.17 . Using this information, the costs (𝐶𝑖𝑗) based on the distances covered by the transport units to 

each kilometer of the road were calculated, as shown in Table 5. This matrix will be used in the algorithm to determine 

the minimum total cost. 
Table 5. Assignment of work fronts to the project quarries 

Quarry Km-0 Km-1 Km-2 Km-3 …… Km-25 Supply (m3) 

B1 13.552 10.033 6.514 7.042 …… 84.464 5200 

B2 56.486 52.967 49.448 45.929 …… 41.530 8100 

B3 98.168 94.649 91.129 87.610 …… 6.475 10200 

Demand (m3) 963.18 730.79 973.86 364.57 …… 787.67  

 

The cost obtained through optimization is USD 67,266.58 per m3 and represents a reduction of USD 9,038.84 per m3 

compared to the traditionally calculated cost in Table 4; in percentages, the savings amount to 11.6%.  

Efficiency in road construction projects is achieved not only through the optimization of material transport routes, as 

demonstrated in the Combapata highway project in Cusco, Peru, where the application of linear scheduling models 

resulted in a significant cost reduction, but also through the implementation of adaptive and resilient risk management 

strategies. The latter are crucial in contexts affected by extreme weather events, as evidenced on the Oyon-Ambo 

highway during the 2019 El Niño event, where proactive risk management minimized the negative impact on 

infrastructure (Ariza Flores & Portocarrero, 2024; Ariza Flores & Salvador, 2024). These approaches highlight 

the importance of planning and adaptability in the construction of resilient road infrastructure.  

 

6. Conclusions 
The present methodology demonstrates a proposal of linear programming that can be utilized in optimizing 

transportation routes, controlling the load capacity of transport units, and supplying materials from nearby depots to 

the construction site. This allows for considering and organizing all variables involved in the process of minimizing 

transportation routes and goals. Within the case study, the proposal enabled the minimization of transportation costs 

by maximizing storage capacity and volume in transportation. Additionally, this model can be complemented with 

information from other operational areas in the road construction project and other requirements of the work to expand 

the model and generate a more significant cost minimization for the project. The limitations of this study lie in the 

adaptability and sensitivity of the linear programming model to different project sizes, geographical variations, and 

fluctuations in parameters such as costs and material availability. The effectiveness of the model can be affected by 

these factors, along with operational challenges and logistical constraints in its practical implementation. Recognizing 

these limitations is crucial for future research and the actual application of the model in the logistic optimization of 

road construction projects. 
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