

Evidence-Based Machine Learning Algorithm Selection for Construction Data Analytics: A Systematic Review

Stuti Garg, Vivek Sharma, Dhaval Gajjar

CITC- 15 | November 10 - 14, 2025
Hosted by The International University of Rabat
Rabat, Morocco

Overview

1. Research Problem
2. Research Objectives
3. Methodology
4. Key Findings
5. Problem Illustrated
6. Why This Matters (Implications)
7. Recommendations for Future Research

Research Problem

The Challenge:

ML applications in construction lack structured decision-making frameworks for algorithm selection

- Construction projects generate massive*, diverse datasets*
- Traditional analysis methods are insufficient
- No systematic approach to match algorithms with dataset characteristics
- Current practice: trial-and-error approach

Research Objectives

What We Investigated?

Primary Question:

Is evidence-based guidance being used to select ML algorithms in construction research?

We Analyzed:

- ✓ Frequency of ML algorithm usage
- ✓ Model objectives (prediction vs. classification)
- ✓ Reasoning behind algorithm selection
- ✓ Correlations with dataset characteristics

Methodology

Systematic Literature Review (PRISMA)

Data Sources:

- Web of Science
- IEEE Xplore
- ICONDA
- ScienceDirect
- ASCE

450

Initial Articles

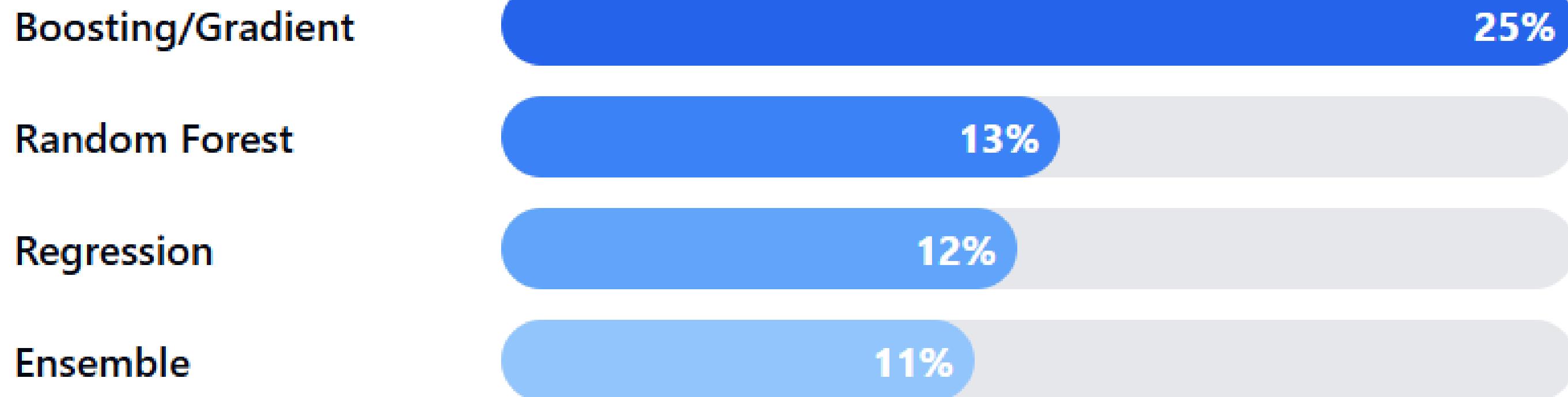
70

After Screening

30

Final Articles

115


ML Methods

Search: "machine learning" AND "construction industry"

KEY FINDINGS

1. Algorithm Frequency

Most Frequently Used ML Algorithms

Key Insight:

Advanced ensemble methods dominate, suggesting construction datasets require sophisticated algorithms to handle complexity.

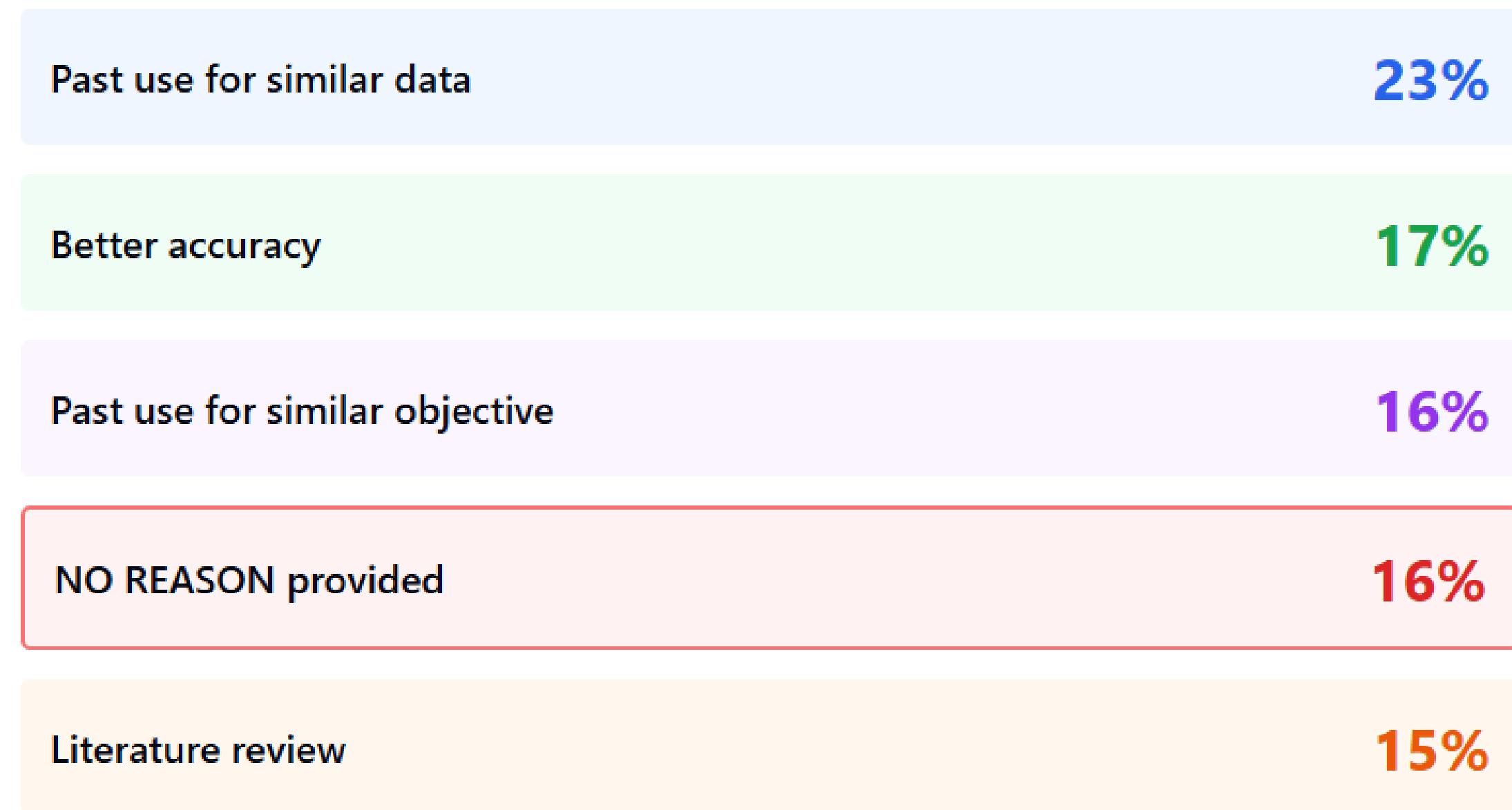
KEY FINDINGS

2. Algorithm by Analysis Objective

Prediction Models (55.7%)

1. Regression	73%
2. ANN	62%
3. Boosting/Gradient	54%

Classification Models (44.3%)


1. KNN	67%
2. Decision Tree	58%
3. SVM	56%

Note: Some algorithms like Random Forest and Ensemble show versatility across both objectives.

KEY FINDINGS

3. Selection Reasoning

Why Researchers Choose Algorithms

No systematic methodology!

CRITICAL FINDING:
39% rely on precedent alone
(past use) - not systematic
analysis
16% provide NO justification
whatsoever

The Problem Illustrated

Current Selection Approach

✗ Current Practice

- Trial-and-error testing
- Following precedent
- "It worked before"
- No systematic rationale
- Time-consuming
- May miss optimal solutions

✓ Needed Approach

- Evidence-based selection
- Data-driven decisions
- Match algorithm to data characteristics
- Consider analysis objectives
- Efficient selection process
- Optimal performance

The Problem Illustrated

3. Current Selection Approach

The Gap:

Researchers intuitively recognize algorithm-data relationships but lack a systematic framework to guide their decisions.

Algorithm Characteristics Summary

Boosting/Gradient

- + High accuracy, handles non-linear data, reduces overfitting
- Complex, computationally intensive

Random Forest

- + Robust, versatile, reduces overfitting
- Scalability issues with large datasets

Regression

- + Simple, interpretable, fast
- Assumes linear relationships, limited with complex data

ANN

- + Handles complex patterns, high accuracy
- "Black box", prone to overfitting

KNN

- + Simple, captures local patterns
- Poor with high-dimensional or imbalanced data

Decision Tree

- + Easy to interpret, handles mixed data types
- Prone to overfitting, sensitive to noise

Full details available in paper Table 1 and Section 4.1

Implication for Construction

Why This Matters?

For Researchers:

- ✓ Save time in algorithm selection
- ✓ Improve model performance
- ✓ Justify methodological choices
- ✓ Avoid trial-and-error approaches

For Industry Practitioners:

- ✓ Better prediction of costs, schedules, safety
- ✓ More reliable risk assessments
- ✓ Evidence-based decision making
- ✓ Efficient use of data analytics resources

For the Field:

- ✓ Standardization of ML practices
- ✓ Foundation for best practices
- ✓ Improved reproducibility

Recommendation for Future Research

What Next?

1. Selection Matrix Development

Create evidence-based norms mapping algorithms to dataset characteristics and objectives

2. Quadrant Framework

Categorize algorithms as traditional/regular/advanced based on complexity and timeline

Recommendation for Future Research

What Next?

3. Cross-Industry Analysis

Compare with retail, manufacturing, finance to identify algorithmic versatility

4. Empirical Validation

Test algorithm-dataset-objective combinations to validate optimal performance

Conclusions

Key Takeaways

Main Findings:

- ✓ Analyzed 115 ML methods from 30 construction studies
- ✓ Boosting/gradient methods most common (25%)
- ✓ Clear patterns by objective (Regression for prediction, KNN for classification)
- ✓ 39% rely on precedent, 16% provide no justification

Confirmed Gap:

No systematic selection approach exists that maps algorithms to dataset characteristics and analysis objectives

Thank you!

Questions?

Acknowledgements

- Name - Affiliation
- Name - Affiliation
- ETC.

Thank you

For any questions, please contact

.....

