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Abstract  
The recent progress in AI has brought an unprecedented transformation in our lives. It is hardly any area of human 

life that is not impacted by this paradigm-changing technology. Infamous as a slow technology adopter, the 

construction industry has also started to embrace this technology keeping in view of its movement towards 

Construction 4.0. This manuscript is a preliminary attempt to assess the AI and associated technologies’ applications 

in the construction engineering and management (CEM) domain. Through secondary data published, an attempt has 

been made to elaborate on Machine Learning, Computer Vision, and Robotics applications in CEM domain, trend of 

applications and map the respective CEM activities and technologies together. The findings reveal extensive and 

diversified applications of Machine Learning, Computer Vision, and Robotics. Furthermore, the use of various 

technologies in CEM domain reflects a growing inclination towards combining digital and automated solutions. There 

is a strong preference for machine learning (ML) and computer vision (CV) in tasks that involve analysis and visual 

processing. Robotics is selectively and strategically employed for physical task execution and risk reduction. 

Convolutional Neural Networks (CNN) dominate the landscape of CEM domain, being the most frequently referenced 

algorithm in the dataset. Their popularity highlights their efficiency in image processing and sophisticated pattern 

recognition tasks, which are critical in a variety of construction applications. In this paper, the algorithm-to-CEM 

application mapping demonstrates a detailed grasp of each AI technique's strengths and use cases in the field of 

construction management. 
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1. Introduction 
 
The advancement of artificial intelligence technology is currently opening new potential in the building industry. 

Machine learning is a hot topic in the field of artificial intelligence, and it plays a critical part in the process of making 

construction "smart." (Xu et al., 2021). Machine Learning focuses on the development and utilization of computer 

systems that can acquire knowledge and make predictions based on past data or experiences, utilizing statistical 

methods, without the need for explicit programming (Abioye et al., (2021). Machine learning algorithms can be 

classified in numerous ways. ML models can be categorized based on the level of supervision they receive during the 

training phase. The ML models can be classified as supervised learning, unsupervised learning, reinforcement learning 

(Baduge et al., 2022), and Deep Learning (LeCun et al., 2015; Oyedele et al., 2021; Schmidhuber, 2015; Abioye et 

al., 2021). Computer vision (CV) is a technology that allows computers to analyze digital images or videos and extract 

valuable information (Davies, 2022; Wiley & Lucas, 2018). It enables the detection, identification, and automation of 

processes by integrating inputs from the physical world (Wiley & Lucas, 2018). It is a fusion of various principles, 

such as digital image processing, machine learning, and pattern recognition (Abioye et al., 2021). Construction is a 

labor-intensive sector of the economy with a challenging workplace. Commercial bricklaying robots, building and 

delivery drones, robotics for monitoring and inspection, and automated bulldozers are only a few examples of the 

expanding use of automation in the built environment in order to address dangerous, repetitive, and labor shortage 
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issues (Oesterreich & Teuteberg, 2016). Cai et al. (2019) carried out an in-depth market analysis of the technologies 

and developers of automation technologies and robots. 90 commercial businesses were found, of which 24 

manufactured products for the construction of high-rise buildings, including 17 for automated construction systems, 

6 for automated logistics systems, 4 for façade cleaning, 5 for façade inspection, and 6 for façade installation (some 

companies provided more than one type of products). After removing duplicates, they obtained 105 companies 

providing products on construction automation and robotics (not limited to high-rise building construction) in total. 

According to their major businesses, these companies were divided into five categories, while the companies identified 

for high-rise building construction mainly fall into the categories of “Construction machinery company” (3 companies, 

11.1%), “Construction company” (12 companies, 44.4%) and “Construction automation and robotics company” (12 

companies, 44.4%). 

This paper reports the findings of an archive investigation, the respective publications and their secondary 

citations were examined to assess how they reported on the use of Machine Learning, Computer Vision, and Robotics 

in the field of construction engineering and management. The authors note that there is an immense crossover between 

these three technologies because robots utilize computer vision which is essentially powered by ML algorithms. 

 

2. Methods and Materials 
 
This paper is an archival study of Abioye et al. 2021; Ivanova et al. 2023; Garcia et al. 2022; Akinosho et al. 2020. 

These papers and their secondary citations were analyzed for their reporting of Machine Learning, Computer Vision, 

and Robotics applications in construction engineering and management domain. Fig. 1. presents the methodology.  

 
Fig. 1. Paper methodology 

 
• Data collection: Google Scholar, Web of Science, Scopus were used to collect above mentioned papers that 

extensively reported AI, Computer Vision, and Robotics applications in construction engineering and management 

domains.  

• Review: The collected papers were reviewed to extract pertinent information and all secondary citations that 

were present in the original papers.  

• Synthesis of information: The information collected was then synthesized from the point of view of 

commonality and information ad-on.  

• Preparing data for analysis: The synthesized data was then transformed into MS Excel files for further 

analysis and visualizations. 

• Loading RStudio packages/libraries: Relevant libraries for RStudio were loaded/installed. The particular 

libraries used for data analysis and visualization were readxl; tidyr; dplyr; ggplot2. The R library tidyr is specifically 

designed to assist users in organizing their data, a critical process in data analysis. Data tidying is converting data into 

a format that facilitates easy and intuitive examination. The ggplot2 package in R is a robust and extensively utilized 

framework for generating visually pleasing data visualizations. The concept is derived from the "Grammar of 

Graphics," which offers a systematic approach to constructing graphical representations of data. readxl was used to 

read Excel files into the RStudio environment. The dplyr package in RStudio is a fundamental tool for manipulating 

data inside the tidyverse, which is a set of R packages specifically created for data science. 

• Importing Excel files: The synthesized data was then imported into RStudio using readxl. 

• Renaming columns names: Columns in the imported data were renamed for ease of data handling.  

• Reshaping the data to long format: Using the tidyr and dplr package, the imported data was transformed into 

long format to facilitate analysis. The aim for reshaping the data was to ensure that each row corresponds to one 

respective data point/value.  

• Plotting the data: Using ggplot2, the pertinent data was plotted (refer Fig. 2. to Fig. 5. below). 



 

  

• Saving the plot: The final step was to export the generated plot in *.png format. 

 

3. Results and Discussion 
 
3. 1 Machine Learning, Computer Vision, and Robotics Applications in CEM Domain  

Fig.2. presents a summary of automation and AI applications in Construction Engineering and Management (CEM) 

domain. The data has been sourced from (Abioye et al., 2021).  Fig. 2. illustrates the utilization of three domains of 

Artificial Intelligence—Machine Learning (ML), Computer Vision (CV), and Robotics—into different areas of 

construction engineering and management, including Health and Safety, Scheduling, Cost Estimation, and more. An 

evident pattern arises from the data as presented in Fig.2. below.  

Machine Learning is widely used in all fields (ML found utilized- 88% versus ML(N/A) not found utilized-

12%), highlighting its adaptable role in improving and automating several processes in the CM domain. Significant 

uses of Machine Learning (ML) are Health and Safety, Scheduling, Cost Estimation, Contracts and Conflict Mgt, 

Supply Chain and Logistics, Site Monitoring & Performance Evaluation, Material Mgt, Offsite Assembly, Plant and 

Equipment Mgt, Project Planning, Knowledge Mgt, Design, Risk Mgt, Temporary Structures, Bids/Tenders. 

 

 
Fig. 2. Automation and AI Applications in CEM Domain (Data from Abioye et al. 2021) 

 
Computer Vision is used selectively (CV found utilized- 47% versus  CV(N/A) not found utilized-53%), primarily 

in domains where image processing is essential. Significant uses of Computer Vision are Health and Safety, 

Scheduling, Cost Estimation, Contracts and Conflict Mgt, Supply Chain and Logistics, Site Monitoring & 

Performance Evaluation, Material Mgt, Offsite Assembly, Plant and Equipment Mgt, Project Planning, Knowledge 

Mgt, Design. The application of robotics is limited (Robotics found utilized-41% versus Robotics(N/A) not found 

utilized-59%) and hence establishes necessity for automation in specific domains of construction management. With 

its limited application, Robotics are utilized in various areas such as Site Monitoring & Performance Evaluation, 

Material Management (Mgt), Offsite Assembly, Plant and Equipment Mgt, Project Planning, Knowledge Mgt, Design, 

Risk Mgt, Temporary Structures, Bids/Tenders, Energy Mgt. 

Having the evidence that indeed automation and AI techniques have multitude of applications in the CEM 

domain, an attempt was made to map recent citations for the three categories against the CEM domains/activities. Fig 

3 presents the insight visually. 

 

3.2 Trend of Machine Learning, Computer Vision, and Robotics Application in the Construction Industry 

The presented data (Fig. 3.) presents an analysis of the application of Machine Learning (ML), Computer Vision (CV), 

and Robotics in different domains and activities in Construction Engineering Management (CEM). As per the work 

by Ivanova et al. (2023), ML and CV are widely utilized in several CEM domains/activities, with Robotics being 

comparatively less common.  



 

  

 

Within the domain of Contracts, Conflict Management, and Tenders, there is a significant preference for CV (67%), 

suggesting a dependence on visual data analysis, potentially for the purpose of contract paperwork and tender 

assessments (Ivanova et al., 2023; Zhang et al., 2023; Ottoni et al., 2023; Alsugair et al., 2023). The field of Health 

and Safety is primarily influenced by Machine Learning (ML) technology, accounting for 60% of its concentration. 

This indicates an emphasis on using predictive analytics to prevent accidents and monitor health conditions (Ivanova 

et al., 2023; Alkaissy et al., 2023; Anwer et al., 2023; Luo et al., 2023; Chern et al., 2023; Chen et al., 2023). Project 

Planning and Design involves a more equitable allocation of usage, with Machine Learning (50%) and Computer 

Vision (33%) playing significant roles, perhaps in automating design processes and creating visual project simulations. 

Robotics also makes a lesser but noteworthy contribution (17%) (Ivanova et al., 2023; Abioye et al., 2021; Ramadan 

& Elgendi, 2023; Y. Wang et al., 2023; Sánchez-Garrido et al., 2023; X. Wu et al., 2023; S. Wang et al., 2023). The 

application in the domain of Risk Management is equally divided between Machine Learning (ML) and Robotics, 

with each accounting for 50% (Ivanova et al., 2023; Abioye et al., 2021; Ottoni et al., 2023; Wen et al., 2023; Lin et 

al., 2023). The field of Supply Management, Equipment, and Logistics relies entirely on Machine Learning (100%), 

indicating a significant dependence on data-driven methods for planning logistics and managing inventory (Ivanova 

et al., 2023; Pan & Zhang, 2021; Abioye et al., 2021; Xu et al 2021). Site Monitoring and Performance Evaluation 

incorporates a combination of all three technologies, with a somewhat greater emphasis on CV (43%). This suggests 

that image and video analytics are likely being utilized for site supervision (Ivanova et al., 2023; Sadatnya et al., 2023; 

Geng et al., 2023; Ahila Priyadharshini et al., 2023; Alsakka et al., 2023; Zou et al., 2023; Abu Kharmeh et al., 2023; 

Oke et al., 2023).  

 
Fig. 3. Trend of AI Application in the Construction Industry (Data from Ivanova et al. 2023) 

 

In conclusion, the use of various technologies in CEM reflects a growing inclination towards combining digital and 

automated solutions. There is a strong preference for machine learning (ML) and computer vision (CV) in tasks that 

involve analysis and visual processing. Robotics is selectively and strategically employed for physical task execution 

and risk reduction. An attempt was made to peel off one more layer of data to understand the types of AI algorithms 

and their utilization in the context of construction engineering and management (CEM). Fig 4. presents the AI 

algorithms versus year and Fig.5. presents the CEM Activities in the Context of AI Utilization VS Year pattern.  

Fig. 4. and Fig. 5. are interpreted in terms of frequency of AI algorithms, year wise AI algorithms used in 

CEM applications. From the point of view of frequency of AI/ML Algorithms, Convolutional Neural Networks (CNN) 

dominate the landscape of Construction Engineering and Management (CEM), being the most frequently referenced 

algorithm in the dataset. Their popularity highlights their efficiency in image processing and sophisticated pattern 



 

  

recognition tasks, which are critical in a variety of construction applications. Following CNN, Recurrent Neural 

Networks (RNN) are the second most cited, demonstrating its ability to handle sequential data. Other algorithms, such 

as K-Nearest Neighbors (KNN) and Artificial Neural Networks (ANN), are used as well, demonstrating a varied 

spectrum of AI applications in CEM. When attention is drawn to yearly trends.  

 

 
Fig. 4. AI Algorithms VS Year (Data from Garcia et al. 2022; Akinosho et al. 2020) 

 

 



 

  

Fig. 5. CEM Activities in the Context of AI Utilization VS Year (Data from Garcia et al. 2022; Akinosho et al. 2020) 

The analysis reveals a developing landscape of AI algorithm utilization in CEM. In the previous years (2015-2016), 

there was a broad use of algorithms such as artificial neural network (ANN), Decision Trees, and k-nearest neighbors 

(KNN), indicating an exploration phase in AI adoption. In recent years (2019-2020), there has been a considerable 

shift toward advanced algorithms such as convolutional neural networks (CNN) and recurrent neural networks (RNN). 

This trend represents a maturing in the industry's approach to AI, as it progresses from foundational algorithms to 

more sophisticated ones capable of handling complex data and providing deeper insights. This evolution reflects the 

overall advancement in AI capabilities to handle more complex activities, which necessitates increasingly powerful 

analytical tools. The assessment of AI/ML algorithms used in CEM applications establishes a link between certain 

AI/ML algorithms and CEM applications. It demonstrates an alignment of technology with task needs. For example, 

Convolutional Neural Networks (CNN) is widely used for essential tasks such as forecasting structural integrity (crack 

prediction), stress detection, and safety measures (detecting safety equipment, evaluating worker postures). RNN is 

preferred for applications involving activity detection and long-term predictive modeling because of its ability to 

interpret time-series data. Simpler algorithms, such as KNN and ANN, find use in general classification and detection 

tasks. This algorithm-to-application mapping demonstrates a detailed grasp of each AI technique's strengths and use 

cases in the field of construction management. 

 

5. Conclusions  
Based on the findings from this paper, Machine Learning has been reported to be used in CEM fields such as Health 

and Safety, Scheduling, Cost Estimation, Contracts and Conflict Management (Mgt), Supply Chain and Logistics, Site 

Monitoring & Performance Evaluation, Material Mgt, Offsite Assembly, Plant and Equipment Mgt, Project Planning, 

Knowledge Mgt, Design, Risk Mgt, Temporary Structures, Bids/Tenders. Whereas Computer Vision is used 

selectively, and the application of robotics is also found strategically limited. In conclusion, the use of various 

technologies in CEM reflects a growing inclination towards combining digital and automated solutions. There is a 

strong preference for machine learning (ML) and computer vision (CV) in tasks that involve analysis and visual 

processing. Robotics is selectively and strategically employed for physical task execution and risk reduction. 

Furthermore, Convolutional Neural Networks (CNN) dominate the landscape of Construction Engineering and 

Management (CEM), being the most frequently referenced algorithm in the dataset. Their popularity highlights their 

efficiency in image processing and sophisticated pattern recognition tasks, which are critical in a variety of 

construction applications. In recent years (2019-2020), there has been a considerable shift toward advanced algorithms 

such as convolutional neural networks (CNN) and recurrent neural networks (RNN). This trend represents a maturing 

in the industry's approach to AI, as it progresses from foundational algorithms to more sophisticated ones capable of 

handling complex data and providing deeper insights. This evolution reflects the overall advancement in AI 

capabilities to handle more complex activities, which necessitates increasingly powerful analytical tools. The authors 

also note that there is an characteristic crossover between the three technologies since robots utilize Computer Vision 

(CV) which is in turn powered by Machine Learning (ML) algorithms.  

The future work may look at treating secondary literature with Natural Language Processing (NLP) and other 

text mining approaches to look for clusters of topics, thematic distribution with topical modeling, frequency of terms 

and terminologies using Pareto Analysis and Word Cloud analysis. Another approach may be to look in the 

applications of AI and associated technologies deeply and expand the data along with the analysis of the data via 

protocols grounded in bibliographic and scientometric studies.  
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